A novel tertiary interaction in M1 RNA, the catalytic subunit of Escherichia coli RNase P.
نویسندگان
چکیده
Phylogenetic covariation of the nucleotides corresponding to the bases at positions 121 and 236 in Escherichia coli RNase P RNA (M1 RNA) has been demonstrated in eubacterial RNase P RNAs. To investigate whether the nucleotides at these positions interact in M1 RNA we introduced base substitutions at either or at both of these positions. Single base substitutions at 121 or at 236 resulted in M1 RNA molecules which did not complement the temperature-sensitive phenotype associated with rnpA49 in vivo whereas wild-type M1 RNA or the double mutant M1 RNA, with restored base-pairing between 121 and 236, did. In addition, wild-type and the double mutant M1 RNA were efficiently cleaved by Pb++ between positions 122 and 123 whereas the rate of this cleavage was significantly reduced for the singly mutated M1 RNA variants. From these data we conclude that the nucleotides at positions 121 and 236 in M1 RNA establish a novel long-range tertiary interaction in M1 RNA. Our results also demonstrated that this interaction is not absolutely required for cleavage in vitro, however, a disruption resulted in a reduction in cleavage efficiency (kcat/Km), both in the absence and presence of C5.
منابع مشابه
RNase P: role of distinct protein cofactors in tRNA substrate recognition and RNA-based catalysis
The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5' leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode...
متن کاملMapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe.
The protein subunit of Escherichia coli ribonuclease P (which has a cysteine residue at position 113) and its single cysteine-substituted mutant derivatives (S16C/C113S, K54C/C113S and K66C/C113S) have been modified using a sulfhydryl-specific iron complex of EDTA-2- aminoethyl 2-pyridyl disulfide (EPD-Fe). This reaction converts C5 protein, or its single cysteine-substituted mutant derivatives...
متن کاملVerification of phylogenetic predictions in vivo and the importance of the tetraloop motif in a catalytic RNA.
M1 RNA, the catalytic subunit of Escherichia coli RNase P, forms a secondary structure that includes five sequence variants of the tetraloop motif. Site-directed mutagenesis of the five tetraloops of M1 RNA, and subsequent steady-state kinetic analysis in vitro, with different substrates in the presence and absence of the protein cofactor, reveal that (i) certain mutants exhibit defects that va...
متن کاملIn vitro analysis of processing at the 3'-end of precursors of M1 RNA, the catalytic subunit of Escherichia coli RNase P: multiple pathways and steps for the processing.
M1 RNA of 377 nucleotides, the catalytic subunit of Escherichia coli RNase P, is produced by a 3' processing reaction from precursor M1 RNA, a major transcript from the rnpB gene. We analyzed products and intermediates generated by the in vitro processing reaction using a 40% ammonium sulfate precipitate of the S30 fraction (ASP-40) and determined their involvement in the processing. From the r...
متن کاملAffinity chromatography with an immobilized RNA enzyme.
M1 RNA, the catalytic subunit of Escherichia coli RNase P, has been covalently linked at its 3' terminus to agarose beads. Unlike M1 RNA, which is active in solution in the absence of the protein component (C5) of RNase P, the RNA linked to the beads is active only in the presence of C5 protein. Affinity chromatography of crude extracts of E. coli on a column prepared from the beads to which th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 21 17 شماره
صفحات -
تاریخ انتشار 1993